1 Qualitative Response Models

Qualitative response models...

- explain a "yes" or "no" choice.
- have the regressand as a dummy variable.
- are typically not estimated with OLS techniques.
- require maximum likelihood estimation.
- include linear probability (LP), logit and probit models.

1.1 Linear Probability (LP) Model

The LP model uses the regression equation

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

and ordinary least squares (OLS) to estimate the model. The conditional expectation of Y_i :

$$E(Y_i|X_i) = \beta_1 + \beta_2 X_i = P_i$$

can be treated as a probability.

Issues with the LP model:

- error terms (u_i) follow a Bernoulli rather than a normal distribution
- ullet model exhibits heteroscedasticity.
- predicted probabilities might not satisfy $0 \le P_i \le 1$.
- traditional R^2 value does a poor job of measuring goodness of fit.

1.2 Logit and Probit Models

The logit and probit models specify

$$Y_i^* = \beta_1 + \beta_2 X_i + u_i$$

where Y_i^* is a latent indicator variable.

• We assume that $Y_i = 1$ when $Y_i^* > 0$.

$$\Pr(Y_{i} = 1) = \\ \Pr(Y_{i}^{*} > 0) = \\ \Pr(\beta_{1} + \beta_{2}X_{i} + u_{i} > 0) = \\ \Pr(u_{i} > -\beta_{1} - \beta_{2}X_{i}) = \\ \Pr(u_{i} < \beta_{1} + \beta_{2}X_{i}) = \\ \Pr(u_{i} / \sigma < \beta_{1} / \sigma + (\beta_{2} / \sigma)X_{i}) = \\ \Pr(u_{i}^{*} < \beta_{1}^{*} + \beta_{2}^{*}X_{i}) = F(\beta_{1}^{*} + \beta_{2}^{*}X_{i})$$

- $Pr(Y_i = 0) = 1 F(\beta_1^* + \beta_2^* X_i)$
- Use maximum likelihood (ML) techniques to estimate parameters.
- When u_i is distributed normal \rightarrow probit model
- When u_i is distributed logistically \rightarrow logit model
- β_1^* and β_2^* are estimated, not β_1 and β_2
- Marginal effect, $\partial F(\cdot)/\partial X_i = f(\cdot)\beta_2^*$, is often reported
- Goodness of fit:
 - McFadden's pseudo \mathbb{R}^2
 - 2×2 table of correct and incorrect predictions

1.3 Possible Applications

- Graduate student success (logit/probit model)
- Long-distance MPB dispersal (logit model)
- UW scholarship reform (probit model)
- "America the Beautiful" national park pass (interval regression model)