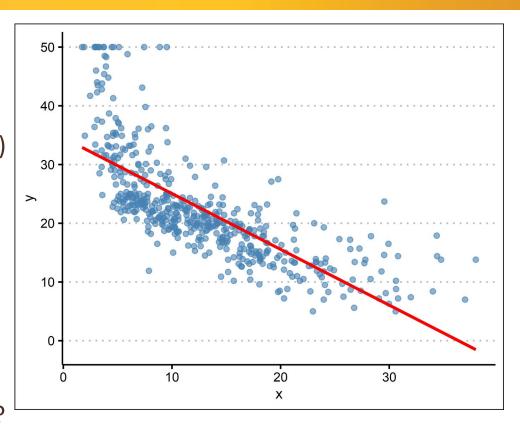
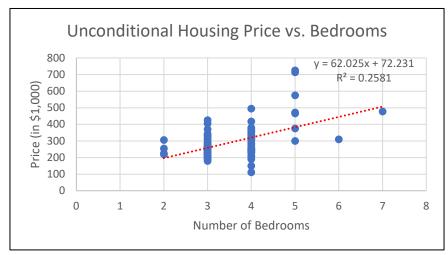
ECON 4730/5730

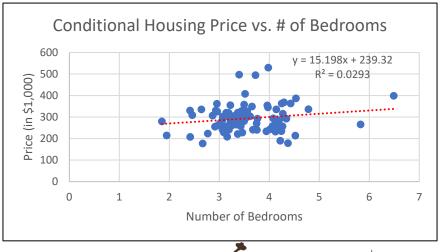
- Data Sources (National)
 - Bureau of Economic Analysis (BEA)
 - Bureau of Labor Statistics (<u>BLS</u>)
 - Federal Reserve Economic Database (<u>FRED</u>)
- Data Sources (Wyoming)
 - Economic Analysis Department (<u>EAD</u>)
 - Wyoming Geospatial Hub (<u>WYGISC</u>)


- Subscriptions and Software Programs
 - IMPLAN
 - Regional Economic Model Inc. (<u>REMI</u>)
 - Dun & Bradstreet (<u>D&B</u>)
 - Moody's Analytics
 - Qualtrics
 - <u>Lightcast</u> & Alumni Pathways

• Econometrics

- Data types: cross sectional, time series, panel (longitudinal)
- Regression: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where i = 1, ..., n
- β_0 is the intercept
- β_1 is the slope
- Goodness of fit: How much variation in y is explained by x?

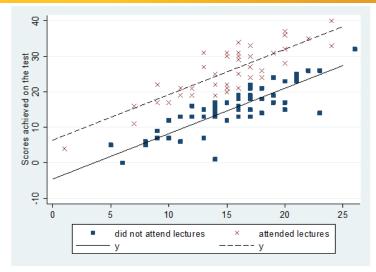


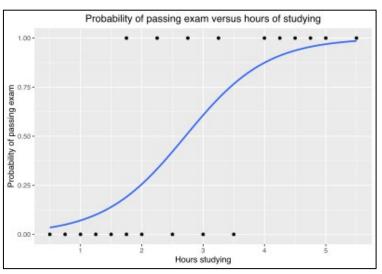


- Econometrics (continued)
 - Multivariate regressions can replicate a controlled experiment
 - Housing price hedonics: $P_i = \beta_0 + \beta_1 SQFT_i + \beta_2 BDRM_i + \varepsilon_i$

•
$$\beta_2 = \frac{\partial P_i}{\partial BDRM_i} > 0 \text{ or } \beta_2 = \frac{\partial P_i}{\partial BDRM_i} < 0$$
?

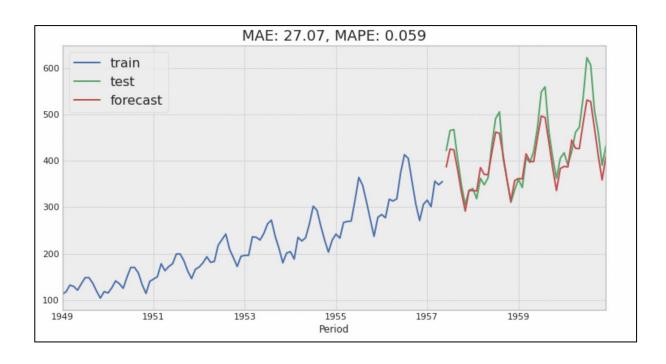
- Remember, β_2 is a partial derivative so $SQFT_i$ is held constant.
- Bedroom value (β_2) depends on the preference of the buyer.
- Application: Business Council grants.





- Econometrics (continued)
 - Some explanatory variables are binary rather

•
$$P_i = \beta_0 + \beta_1 SQFT_i + \beta_2 BDRM_i + \beta_3 POOL_i + \varepsilon_i$$


- $POOL_i = 0 \text{ or } 1$
- β_3 is the premium for a pool, all else equal
- Some dependent variables are binary
- Typically estimated with a logit or probit model

- Time Series Forecasting
 - Methods: Regression, Exponential Smoothing, ARIMA
 - Forecasting Steps:
 - Define the problem
 - Gather information
 - Preliminary exploratory analysis
 - Choose and fit models
 - Evaluate forecasting model
 - Training and Test Datasets

- ARIMA model: $y_t' = c + \phi_1 y_{t-1}' + \dots + \phi_p y_{t-p}' + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$
- ARIMA spreadsheet for AR(2) and MA(2)
- Application: ARIMA forecasting for Black Hills Energy Corp.

