
ECON 5110 Class Notes
Learning

1 Introduction

This section relies heavily on the material in George Evans and Seppo Honkapohja’s book Learning and

Expectations in Macroeconomics. Expectations of future economic variables play an important role in

macroeconomic theory. Examples include the permanent-income lifecycle consumption hypothesis, monetary

policy and asset pricing models. The evolution of expectations in macroeconomics can be classified as follows:

• Naive expectations. Under this mechanism, expectations of a future variable yt+1 are given by yet+1 =
yt.

• Adaptive expectations. An example of adaptive expectations (AE) is

yet+1 = yet + λ(yt − yet )

where the parameter λ governs how current expectations adjust to the previous period’s forecasting

errors. AE were commonly used in Keynesian models that dominated the macro landscape in the 1960s

and 1970s. For example, the expectations-augmented Phillips curve often employed AE. In terms

of policy, AE imply that policymakers can continually adjust policy instruments (such as government

spending or the money supply) to manipulate macro aggregates.

• Rational expectations. The rational expectations (RE) revolution in macroeconomics began in the

mid 1970s with the research of Robert Lucas and Thomas Sargent. It has dominated macroeconomic

theory ever since. RE assumes economic agents are very sophisticated. They form expectations of

future variables according to

yet+1 = E(yt+1|Ωt)

where E is the mathematical expectation operator and Ωt is the information set containing all informa-

tion dated at time t and earlier. RE assumes agents know the structure of the economy and all relevant

parameter values. In terms of policy, RE imply that policymakers are no longer able systematically

manipulate macro aggregates — agents understand policymakers’ incentives to do so and adjust their

behavior accordingly.
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• Learning. Learning in macroeconomics is a reaction to the strong assumptions made with RE. In

particular, it seems unreasonable to assume that economic agents know the relevant parameter values

with certainty when even the best econometricians must themselves estimate the parameters. Learning

generally assumes that, while agents are able to figure out the reduced-form equations governing the

economy, they must continually update their estimates of the parameters. An interesting question is

whether, through the learning process, agents can grope their way toward the rational expectations

equilibrium (REE). Learning is also a useful tool to choose between multiple REE — only those that

are stable under learning would be expected to be observed.

2 Learning Techniques

2.1 The Setup

Begin by considering a structural macroeconomic model (similar to the one discussed in the previous set of

lecture notes):

yt = a+ b1E
∗
t−1yt + b2E

∗
t−1yt+1 + cxt (1)

xt = ρxt−1 + et

where E∗t−1 is some arbitrary expectations mechanism and E∗t−1et = 0. The REE solution takes the form

yt = φ̄0 + φ̄1xt−1 + η̄t (2)

where η̄t = cet. Assume now that agents do not know (φ̄0, φ̄1), but are able to figure the structure of

equation (2). Agents instead specify a perceived law of motion (PLM)

yt = φ0 + φ1xt−1 + ηt (3)

where (φ0, φ1) are the agents estimates of (φ̄0, φ̄1). The actual law of motion (ALM) is found by substituting

the forecasts for yt and yt+1 from the PLM into the structural model (1):

yt = a+ b1[φ0 + φ1xt−1] + b2[φ0 + φ1ρxt−1] + cxt,
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which after rearranging gives

yt = [a+ φ0(b1 + b2)] + [φ1(b1 + ρb2) + cρ]xt−1 + η̄t. (4)

This implicitly defines a mapping from the PLM to the ALM

T

φ0

φ1

 =

 a+ φ0(b1 + b2)

φ1(b1 + ρb2) + cρ


The relevant questions are whether the parameters in equation (4) converge under reasonable learning rules

(discussed below), and if so, do they converge to the REE (φ̄0, φ̄1)?

2.2 Least-Squares Learning

Let φt−1 = (φ0,t−1, φ1,t−1) be the estimate of φ = (φ0, φ1) at time t − 1, and let zi = (1, xi)
0. The

least-squares estimates are

φ0,t−1

φ1,t−1

 =
hPt−1

i=1 zi−1z
0
i−1
i−1 hPt−1

i=1 zi−1yi
i
. (5)

Note that the least squares estimates can also be written in a recursive manner as

φt = φt−1 + t−1R−1t zt−1(yt − φ0t−1zt−1) (6)

Rt = Rt−1 + t−1(zt−1z0t−1 −Rt−1),

which is known as recursive least squares (RLS). Here t−1 is referred to as the gain, (yt − φ0t−1zt−1) is the

most recent forecast error and Rt is the moment matrix for zt. Substituting these estimates back into (4),

we have

yt = [a+ φ0,t−1(b1 + b2)] + [φ1,t−1(b1 + ρb2) + cρ]xt−1 + ηt

or alternatively

yt = T (φt−1)
0zt−1 + ηt. (7)
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Substituting (7) into (6) gives

φt = φt−1 + t−1R−1t zt−1((T (φt−1)
0 − φ0t−1)zt−1 + ηt) (8)

Rt = Rt−1 + t−1(zt−1z0t−1 −Rt−1), (9)

which is a recursive stochastic system. Showing convergence of this recursive least squares system is

complicated (see chapter 6 of Evans and Honkapohja) and by no means obvious. Under learning, economic

variables depend on agents’ econometric forecasts of a system, which in turn depends on their forecasts.

This type of learning environment can lead to either divergence from or convergence to REE. Fortunately,

the concept of expectational stability (E-stability) can be used to establish convergence (or lack thereof).

2.3 Expectational Stability

Before presenting the conditions necessary for E-stability, first note that the REE solution (φ̄0, φ̄1) is a fixed

point of the mapping φ = T (φ). We will show this explicitly in an example below. We say the REE is

E-stable if the REE is locally asymptotically stable under the differential equation

d

dτ

φ0

φ1

 = T

φ0

φ1

−
φ0

φ1

 (10)

where τ denotes artificial time. In other words, an REE is E-stable if small deviations from an REE under a

perceived law of motion and a given learning rule, gradually return back to the REE. Using the framework

above, we would look for the conditions under which the equations

dφ0
dτ

= a+ φ0(b1 + b2)− φ0 = a+ φ0(b1 + b2 − 1)
dφ1
dτ

= φ1(b1 + ρb2) + cρ− φ1 = φ1(b1 + ρb2 − 1) + cρ

generate stability in a neighborhood of the REE. Assuming that 0 ≤ ρ ≤ 1, a sufficient condition for

E-stability is b1 + b2 < 1.
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3 Economic Applications

3.1 Cobweb Model

Consider a competitive market for a single good. The demand for the good is given by

dt = α0 − α1pt + νdt

and since there is a production lag, supply depends on expected price

st = β0 + β1E
∗
t−1pt + νst

where νdt and νst are mutually uncorrelated, mean-zero white-noise shocks. Assuming markets clear (i.e.,

dt = st), then we have the reduced-form equation

pt = a+ bE∗t−1pt + ηt

where a = (α0 − β0)/α1, b = −β1/α1 < 0, and ηt is mean-zero white noise.

3.1.1 Naive Expectations

Under naive expectations (E∗t−1pt = pt−1), we have

pt = a+ bpt−1 + ηt. (11)

There are two cases:

1. Irregular case. If the supply curve is steeper than the demand curve (i.e., 0 > b > −1), then
equation (11) is a stationary stochastic process, the equilibrium is indeterminate and the fixed-point

p = (1−b)−1a is a "sink". (Note: This appears to be inconsistent with the results in the previous set of
notes, but notice that equation (11) is written in its backward-looking, as opposed to forward-looking,

form).

2. Regular case. Conversely, if the demand curve is steeper than the supply curve (i.e., b < −1), the
unique, fundamental equilibrium is pt = (1− b)−1a+ η̃t, a noisy steady-state.
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3.1.2 Rational Expectations

Under rational expectations (E∗t−1pt = Et−1pt), we have

pt = a+ bEt−1pt + ηt. (12)

Begin by taking expectations of both sides of (12) conditional on information at time t − 1, which gives
Et−1pt = (1− b)−1a. Substituting back into (12), produces the unique REE

pt = (1− b)−1a+ ηt

= φ̄+ ηt. (13)

3.1.3 Stability of the REE Under LS Learning

Assume that agents do not know φ̄ in equation (13), but instead use the following PLM to forecast prices:

pt = φ+ ηt.

Plugging the forecasts back into equation (12), gives the ALM

pt = (a+ bφ) + ηt.

The condition for E-stability (and hence convergence under least-squares learning) is that φ̄ be locally,

asymptotically stable under

dφ

dτ
= T (φ)− φ = (a+ bφ)− φ = a+ φ(b− 1). (14)

Therefore, if b < 1 the REE is stable under learning. Since b < 0, the REE is indeed stable under learning.

For example, in the unlikely event that supply sloped down more steeply than demand (i.e., β1 < 0 and

|β1| > |α1|), then the REE solution would be unstable under learning. Finally, note that φ̄ = (1 − b)−1a

can easily be seen as the unique fixed point of (14).
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3.2 Lucas Aggregate Supply Model

Lucas’ aggregate supply function is

qt = q + π(pt −E∗t−1pt) + �t (15)

where qt is aggregate output, pt is the price level, π, q > 0 and �t is mean-zero white noise. Aggregate

demand is derived from the quantity equation

mt + vt = pt + qt (16)

where vt is a velocity shock and mt is the money supply, which is white noise around a constant mean m

mt = m+ µt. (17)

All variables are measured in logarithms. Some simple algebra produces the reduced form

pt = a+ bE∗t−1pt + ηt (18)

where

a =
m− q

1 + π
, b =

π

1 + π
and ηt =

1

1 + π
(µt + νt − �t).

Since equation (18) is in the same form as the Cobweb equation, it has the same condition for stability under

learning

b < 1 =⇒ π < (1 + π).

This condition is satisfied so that the REE from the Lucas supply model is always stable under learning.

3.3 Ramsey Model

3.3.1 Framework

Consider a discrete-time version of the Ramsey growth model, which abstracts from population growth,

technology shocks and depreciation. Labor supply (Nt) is normalized to one. The representative agent

maximizes

E∗t
P∞

i=0 β
t+i(1− σ)−1C1−σt+i
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subject to

Ct +Kt+1 = wt + (1 + rt)Kt.

Firms, given the CRS production function f(Kt) = Kα
t , maximize profits given by

f(Kt)− rtKt − wt.

This produces the standard Euler equations

rt = f 0(Kt)

wt = f(Kt)−Ktf
0(Kt).

Plugging these into the consumer’s problem (and assuming perfect foresight) gives

Ct+1 = Ct[β(1 + α(Kt +Kα
t − Ct)

α−1)]1/σ

Kt+1 = Kt +Kα
t − Ct.

The Ramsey model has a unique equilibrium, involving a saddle path that converges to a non-stochastic

steady state (C̄, K̄). In other words, for a given K0, there is a unique choice of C0 that will put the economy

on a convergent path to the steady state. All other choices for C0 will lead to divergent paths that violate

some non-negativity constraint or transversality condition.

3.3.2 Learning

Now let’s introduce some uncertainty and learning. Given the knife-edge nature of the equilibrium, it is an

open question as to whether the economy will converge to the rational expectations equilibrium when agents

start with non-rational expectations and use some sort of adaptive learning. Begin by linearizing the system

ĉt = a1E
∗
t ĉt+1 + a2E

∗
t k̂t+1 (19)

k̂t+1 = b1ĉt + b2k̂t. (20)
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The REE takes the form

k̂t+1 = φ̄1k̂t

ĉt+1 = φ̄2k̂t+1.

Now assume that agents use the following PLM in forecasting

k̂t+1 = φ1k̂t

ĉt+1 = φ2k̂t+1.

Substituting agents’ forecasts of ĉt+1 and k̂t+1 into (19) gives the ALM

ĉt+1 = [φ1(a2 + a1φ2)]k̂t+1

k̂t+1 = [b1φ2 + b2]k̂t.

The ALM can also be written as

ĉt/k̂t = [φ1,t(a2 + a1φ2,t)] = T1(φ1,t, φ2,t)

k̂t+1/k̂t = [b1φ2,t + b2] = T2(φ1,t, φ2,t).

The law of motion for the parameters under adaptive learning is

φ1,t = φ1,t−1 + γt[(ĉt−1/k̂t−1)− φ1,t−1] = φ1,t−1 + γt[T1 − φ1,t−1]

φ2,t = φ2,t−1 + γt[(k̂t/k̂t−1)− φ2,t−1] = φ2,t−1 + γt[T2 − φ2,t−1].

Convergence to the REE can be verified computationally. Evans and Honkapohja state that the convergence

to (φ̄1, φ̄2) is rapid for parameter values β = 0.9, α = 0.3, σ = 0.5 and constant-gain learning. Because

|φ̄1| < 1, this also implies that (Ct,Kt) converge to (C̄, K̄). So, the Ramsey REE appears to be stable

under learning.
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