Consider the following regression model without a constant

$$
y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\epsilon_{i} ; i=1, \ldots, n
$$

where the error terms are i.i.d., $\bar{x}_{1}=\bar{x}_{2}=0$ and $\operatorname{corr}\left(x_{1 i}, x_{2 i}\right)=0$. Use this information to answer the following equally weighted questions.

1. Using summation notation, find the normal equations for the ordinary least squares (OLS) estimator of β_{1} and β_{2}. Check the second-order conditions.

Answer. The least squares objective function is

$$
S\left(\beta_{1}, \beta_{2}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}\right)^{2}
$$

The normal equations are the FOCs for minimization of $S\left(\beta_{1}, \beta_{2}\right)$:

$$
\begin{aligned}
& \frac{\partial S\left(\beta_{1}, \beta_{2}\right)}{\partial \beta_{1}}=-2 \sum_{i=1}^{n} \epsilon_{i} x_{1 i}=0 \\
& \frac{\partial S\left(\beta_{1}, \beta_{2}\right)}{\partial \beta_{2}}=-2 \sum_{i=1}^{n} \epsilon_{i} x_{2 i}=0
\end{aligned}
$$

The second-order conditions simplify to:

$$
\begin{aligned}
& \frac{\partial^{2} S\left(\beta_{1}, \beta_{2}\right)}{\partial \beta_{1}^{2}}=2 \sum_{i=1}^{n} x_{1 i}^{2}>0 \\
& \frac{\partial^{2} S\left(\beta_{1}, \beta_{2}\right)}{\partial \beta_{2}^{2}}=2 \sum_{i=1}^{n} x_{2 i}^{2}>0
\end{aligned}
$$

2. Solve the normal equations to find the OLS estimator of β_{1} and β_{2}.

Answer. The normal equations can be rewritten as

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}\right) x_{1 i}=0 \\
& \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}\right) x_{2 i}=0
\end{aligned}
$$

Using the fact that $\operatorname{corr}\left(x_{1 i}, x_{2 i}\right)=0$, we can write

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{1 i}\right) x_{1 i}=0 \\
& \sum_{i=1}^{n}\left(y_{i}-\beta_{2} x_{2 i}\right) x_{2 i}=0
\end{aligned}
$$

This implies that the OLS estimators are

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i} x_{1 i}}{\sum_{i=1}^{n} x_{1 i}^{2}} \\
& \hat{\beta}_{2}=\frac{\sum_{i=1}^{n} y_{i} x_{2 i}}{\sum_{i=1}^{n} x_{2 i}^{2}}
\end{aligned}
$$

3. Write out the regression model in matrix notation. Clearly define all the matrices with appropriate dimensions.

Answer. The regression model in matrix form is $Y=X \beta+\epsilon$, where

$$
Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]_{n \times 1} X=\left[\begin{array}{cc}
x_{11} & x_{21} \\
x_{12} & x_{22} \\
\vdots & \vdots \\
x_{1 n} & x_{2 n}
\end{array}\right]_{n \times 2} \text { and } \epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]_{n \times 1}
$$

4. Show the equivalence of the matrix-based OLS formula with the results from question $\# 2$. Answer. The matrix-based OLS formula is $b=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right)$. Writing this out, we get

$$
b=\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{1 i}^{2} & \sum_{i=1}^{n} x_{1 i} x_{2 i} \\
\sum_{i=1}^{n} x_{2 i} x_{1 i} & \sum_{i=1}^{n} x_{2 i}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\sum_{i=1}^{n} y_{i} x_{1 i} \\
\sum_{i=1}^{n} y_{i} x_{2 i}
\end{array}\right] .
$$

Then using the fact that $\operatorname{corr}\left(x_{1 i}, x_{2 i}\right)=0$, we get

$$
b=\left[\begin{array}{cc}
\frac{1}{\sum_{i=1}^{n} x_{1 i}^{2}} & 0 \\
0 & \frac{1}{\sum_{i=1}^{n} x_{2 i}^{2}}
\end{array}\right]\left[\begin{array}{l}
\sum_{i=1}^{n} y_{i} x_{1 i} \\
\sum_{i=1}^{n} y_{i} x_{2 i}
\end{array}\right]
$$

which shows the equivalence of b and $\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$.
5. Rework question $\# 2$ with $\operatorname{corr}\left(x_{1 i}, x_{2 i}\right)=1$ and the normalization $\operatorname{var}\left(x_{1 i}\right)=\operatorname{var}\left(x_{2 i}\right)=1$. Comment on the results.
$\underline{\text { Answer. If } x_{1 i} \text { and } x_{2 i} \text { are perfectly correlated, the normal equations become }}$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}\right) x_{1 i}=0 \\
& \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}\right) x_{2 i}=0
\end{aligned}
$$

Using the fact that

$$
\frac{1}{n} \sum_{i=1}^{n} x_{1 i}^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{2 i}^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{1 i} x_{2 i}=1
$$

the normal equations reduce to

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} y_{i} x_{1 i}=\beta_{1}+\beta_{2} \\
& \frac{1}{n} \sum_{i=1}^{n} y_{i} x_{2 i}=\beta_{1}+\beta_{2}
\end{aligned}
$$

It is not possible to solve for β_{1} and β_{2} due to the perfect collinearity between $x_{1 i}$ and $x_{2 i}$. In matrix terms, this would imply that the $X^{\prime} X$ matrix was singular.
6. Find the pdf of each error term, $f_{i}\left(\epsilon_{i}\right)$, if the cumulative distribution is $F_{i}\left(\epsilon_{i}\right)=\frac{3}{4} \epsilon_{i}\left(1-\frac{1}{3} \epsilon_{i}^{2}\right)+\frac{1}{2}$ with support $(-1,1)$.

Answer. The pdf is found by taking the derivative of $F_{i}\left(\epsilon_{i}\right)$ with respect to ϵ_{i}, which gives $f_{i}\left(\epsilon_{i}\right)=$ $\frac{3}{4}\left(1-\epsilon_{i}^{2}\right)$.
7. Find the mean (μ) and variance $\left(\sigma^{2}\right)$ of the errors. Sketch the pdf of the errors to verify your answer. Answer. The mean and variance are $\mu=0$ and $\sigma^{2}=1 / 5$.
8. What is the limiting and asymptotic distribution of the sample mean, $\bar{\epsilon}_{n}$.

Answer. The limiting distribution of $\bar{\epsilon}_{n}$ is a spike at $\mu=0$. Using the central limit theorem, the asymptotic distribution is $\bar{\epsilon}_{n} \sim N\left(0, \sigma^{2} / n\right)$.
9. Find the joint pdf for the errors, $f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$.

Answer. Given independence, the joint pdf of the errors is

$$
f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=\prod_{i=1}^{n} f_{i}\left(\epsilon_{i}\right)=\left(\frac{3}{4}\right)^{n}\left(1-\epsilon_{1}^{2}\right)\left(1-\epsilon_{2}^{2}\right) \cdots\left(1-\epsilon_{n}^{2}\right)
$$

10. Use $f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ to find the first-order condition for the maximum (log) likelihood estimate of β_{1} and β_{2}. Is it possible to solve for β_{1} and β_{2} ? Comment.

Answer. Ignoring the scale term, the (log) likelihood function is

$$
\ln L\left(\beta_{1}, \beta_{2}\right)=\sum_{i=1}^{n} \ln \left[1-\left(y_{i}-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}\right)^{2}\right]
$$

with FOCs

$$
\begin{aligned}
& \frac{\partial \ln L\left(\beta_{1}, \beta_{2}\right)}{\partial \beta_{1}}=2 \sum_{i=1}^{n}\left(1-\epsilon_{i}^{2}\right)^{-1} \epsilon_{i} x_{1 i}=0 \\
& \frac{\partial \ln L\left(\beta_{1}, \beta_{2}\right)}{\partial \beta_{2}}=2 \sum_{i=1}^{n}\left(1-\epsilon_{i}^{2}\right)^{-1} \epsilon_{i} x_{2 i}=0
\end{aligned}
$$

These are two nonlinear equations in β_{1} and β_{2}, which will require numerical methods to solve.

