ECON 5350 Solutions to the Midterm Exam - Fall 2017

1. Probability and Statistics (50 pts). Let X have a Pareto cdf where $F(x ; \theta)=1-(1 / x)^{\theta}$ for $x \geq 1$ and zero elsewhere; $\theta>3$.
(a) Find the pdf for $X, f(x)$, and verify it is a valid pdf.
$\underline{\text { Solution. The pdf is }}$

$$
f(x)=\frac{d F(x)}{d x}=\theta x^{-(\theta+1)} \text { for } x \geq 1
$$

and zero otherwise. Integrating $f(x)$ over the range $x \geq 1$ gives

$$
\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \theta x^{-(\theta+1)} d x=\left.\theta\left[-\frac{1}{\theta} x^{-\theta}\right]\right|_{x=1} ^{\infty}=1
$$

(b) Find the mean and variance of X.

Solution. The mean is given by

$$
\mu_{X}=E(X)=\int_{1}^{\infty} \theta x^{-\theta} d x=\frac{\theta}{(\theta-1)}
$$

To calculate the variance, first find

$$
E\left(X^{2}\right)=\int_{1}^{\infty} \theta x^{-\theta+1} d x=\frac{\theta}{(\theta-2)}
$$

The variance is then

$$
\sigma_{X}^{2}=\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{\theta}{(\theta-1)^{2}(\theta-2)}
$$

(c) Let $\theta=4$. Find the pdf for $Y=X^{2}, g(y)$. Find the mean of Y and verify that $g(y)$ is a valid pdf.

Solution. Using the change-of-variable technique, $X=\sqrt{Y}$ and $J=0.5 Y^{-0.5}$. The pdf is

$$
g(y)=4 y^{-5 / 2}\left(0.5 y^{-0.5}\right)=2 y^{-3} \text { for } y \geq 1
$$

and zero otherwise. The mean of Y is given by

$$
E(Y)=\int_{1}^{\infty} 2 y^{-2} d y=-\left.2 y^{-1}\right|_{y=1} ^{\infty}=2
$$

Integrating $g(y)$ over the range $y \geq 1$ gives

$$
\left.\int_{1}^{\infty} g(y) d y=\int_{1}^{\infty} 2 y^{-3} d y=-y^{-2}\right]\left.\right|_{y=1} ^{\infty}=1
$$

(d) Outline two different procedures for estimating θ from a random sample $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.

Solution. The first is the method of moments. Since there is only one unknown parameter, only one moment is needed. Set the estimated mean \bar{X} equal to the population mean from part (b); then solve for θ. A second possibility is maximum likelihood. Use $f(x)$ from part (a) and independence to form the likelihood function (joint probability). Then choose the θ that maximizes the likelihood function.
(e) Find the pdf for the smallest value from a random sample of size $n=2,\left\{X_{1}, X_{2}\right\}$.

The pdf for the first-order statistic when $n=2$ is

$$
\begin{aligned}
f_{1}\left(y_{1}\right) & =n\left(1-F\left(y_{1}\right)\right)^{n-1} f\left(y_{1}\right)=2\left(1-F\left(y_{1}\right)\right) f\left(y_{1}\right) \\
& =2 y_{1}^{-\theta} \theta y_{1}^{-(\theta+1)}=2 \theta y_{1}^{-(2 \theta+1)}, y_{1} \geq 1
\end{aligned}
$$

and zero otherwise.
2. Classical Linear Regression Model (50 pts). Consider the following model: $Y_{i}=\beta_{1}+\beta_{2} X_{i}+\epsilon_{i}$ for $i=1, \ldots, n$.
(a) Without using matrices, derive the least squares estimator for the intercept, β_{1}.

Solution. The least squares objective is

$$
\min \sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-b_{1}-b_{2} X_{i}\right)^{2}
$$

The first-order condition for the intercept is

$$
\frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial b_{1}}=-2 \sum_{i=1}^{n}\left(Y_{i}-b_{1}-b_{2} X_{i}\right)=0 \Rightarrow b_{1}=\bar{Y}-b_{2} \bar{X}
$$

(b) Without using matrices, derive the least squares estimator for the slope, β_{2}.

Solution. The first-order condition for the intercept is

$$
\frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial b_{2}}=-2 \sum_{i=1}^{n}\left(Y_{i}-b_{1}-b_{2} X_{i}\right) X_{i}=0 \Rightarrow b_{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

(c) Show that b_{1} and b_{2} are unbiased, make sure to highlight only the necessary Classical assumptions as you go.

Solution. To show b_{1} is unbiased, we find

$$
\begin{aligned}
E\left(b_{1}\right) & =E(\bar{Y})-E\left(b_{2}\right) \bar{X} \\
& =E\left(\beta_{1}+\beta_{2} \bar{X}+\bar{\epsilon}\right)-\beta_{2} \bar{X} \\
& =\beta_{1}
\end{aligned}
$$

To show b_{2} is unbiased, we find

$$
\begin{aligned}
E\left(b_{2}\right) & =E\left[\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right] \\
& =\frac{1}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} E\left[\sum_{i=1}^{n}\left(\beta_{2}\left(X_{i}-\bar{X}\right)^{2}+\left(\epsilon_{i}-\bar{\epsilon}\right)\left(X_{i}-\bar{X}\right)\right)\right] \\
& =\beta_{2}+\frac{1}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} E\left[\sum_{i=1}^{n}\left(\epsilon_{i}-\bar{\epsilon}\right)\left(X_{i}-\bar{X}\right)\right] \\
& =\beta_{2} .
\end{aligned}
$$

Each proof requires that X is fixed in repeated sampling and the errors are mean zero.
(d) Now consider the alternative model $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\epsilon_{i}$, where $\bar{X}_{2}=\bar{X}_{3}=0$ and $\operatorname{corr}\left(X_{2 i}, X_{3 i}\right)=0$. Use matrix algebra to find the least squares estimates of β_{1}, β_{2} and β_{3}.

Solution. The least squares estimate is

$$
\begin{aligned}
b & =\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{ccc}
n & 0 & 0 \\
0 & \sum x_{2 i}^{2} & 0 \\
0 & 0 & \sum x_{3 i}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
n \bar{y} \\
\sum x_{2 i} y_{i} \\
\sum x_{3 i} y_{i}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 / n & 0 & 0 \\
0 & 1 / \sum x_{2 i}^{2} & 0 \\
0 & 0 & 1 / \sum x_{3 i}^{2}
\end{array}\right]\left[\begin{array}{c}
n \bar{y} \\
\sum x_{2 i} y_{i} \\
\sum x_{3 i} y_{i}
\end{array}\right]=\left[\begin{array}{c}
\bar{y} \\
\sum x_{2 i} y_{i} / \sum x_{2 i}^{2} \\
\sum x_{3 i} y_{i} / \sum x_{3 i}^{2}
\end{array}\right] .
\end{aligned}
$$

(e) Assume the model in part (d) is the true population regression model, but you mistakenly estimate the following model: $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\epsilon_{i}$. Is the OLS estimate of β_{2} biased or unbiased? Defend your answer.

Solution. Unbiased. The expectation of b_{2} is

$$
\begin{aligned}
E\left(b_{2}\right) & =E\left[\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{2 i}-\bar{X}_{2}\right)}{\sum_{i=1}^{n}\left(X_{2 i}-\bar{X}_{2}\right)^{2}}\right] \\
& =\frac{1}{\sum_{i=1}^{n} X_{2 i}^{2}} E\left[\sum_{i=1}^{n}\left(\beta_{2} X_{2 i}^{2}+\beta_{3} X_{2 i} X_{3 i}+\left(\epsilon_{i}-\bar{\epsilon}\right)\left(X_{2 i}\right)\right)\right] \\
& =\beta_{2}+\frac{1}{\sum_{i=1}^{n} X_{2 i}^{2}} E\left[\sum_{i=1}^{n}\left(\epsilon_{i}-\bar{\epsilon}\right)\left(X_{2 i}\right)\right] \\
& =\beta_{2} .
\end{aligned}
$$

