ECON 5350 Final Exam – Fall 2023

Consider the following age-earnings model:

$$Wage_i = \beta_1 + \beta_2 Age_i + \epsilon_i \tag{1}$$

where $\epsilon_i \sim i.i.d. N(0, \sigma^2)$ and i = 1, ..., N. Wages are measured in dollars per hour, and age is measured in years.

- 1. (25 pts) Estimation I. Derive the ordinary least squares (OLS) estimator $b = (b_1, b_2)'$ in either matrix or summation form. Prove that it is an unbiased and consistent estimator of β , highlighting the necessary assumptions.
- 2. (25 pts) Estimation II. Assume you are given the sample of data Wage = (10, 5, 18, 12, 15) and Age = (40, 20, 60, 35, 45). Calculate the OLS estimates and the residuals. Plot the residuals against age. Is there any evidence of heteroscedasiticity? Assuming there is, propose an efficient estimation procedure.
- 3. (25 pts) Hypothesis Testing. Carefully describe three equivalent ways to test the hypothesis $\beta_2 = 0.5$ (there is no need to actually calculate the numerical value of the test statistic, just carefully describe the procedure). Assume the estimate of β_2 is negative. Does this imply that the null hypothesis will be rejected? Explain.
- 4. (25 pts) Dummy Variables. Consider two hypotheses: (a) a high school diploma leads to higher pay and (b) high school graduates progress up the pay scale faster than those without a high school diploma as they age. Modify equation (1) as necessary and describe the how to test each hypothesis.
- 5. (25 pts) **Spline Regression**. Derive the spline regression model with a knot at Age = 40.
- 6. (25 pts) Marginal Effects. Consider a modified version of equation (1) with a quadratic age-earnings profile. Describe a test procedure to test that $\frac{\partial wage}{\partial age} = 0.5$.

7. (50 pts) **Error Term Distribution**. Assume the error terms have a beta ($\alpha = 2, \gamma = 1$) distribution:

$$f(\epsilon_t; c) = c\epsilon_t^{\alpha - 1} (1 - \epsilon_t)^{\gamma - 1},$$

where $0 \leq \epsilon_t \leq 1$.

- (a) Find the constant c.
- (b) How does the new error distribution change your answer in part (1)?
- (c) How does the new error distribution change your answer in part (4)?
- (d) Now assume $\alpha = 3$. Write down the natural log of the joint pdf of the errors.
- (e) Write a paragraph discussing your preferred strategy for estimating β_1 and β_2 using the objective function in part (d).