ECON 5350 Final Exam – Fall 2017

Consider two alternative regression models without an intercept:

$$y_i = \beta \ln(x_i/z_i) + \epsilon_i \tag{Model #1}$$

and

$$y_i = \alpha_1 \ln(x_i) - \alpha_2 \ln(z_i) + \mu_i, \qquad (Model \#2)$$

where i = 1, ..., n, $\epsilon_i \sim i.i.d. N(0, \sigma_{\epsilon}^2)$, and $\mu_i \sim i.i.d. N(0, \sigma_{\mu}^2)$.

- 1. (25 pts) Assume Model #2 is the correct model, but Model #1 is estimated. Derive the least-squares estimator of β in summation form. Show it is equivalent to the matrix-based estimator. Is the estimate unbiased?
- 2. (25 pts) Assume Model #1 is the correct model, but Model #2 is estimated. Derive the least-squares estimator of α_1 and α_2 in summation form. Are the estimates unbiased?
- 3. (25 pts) Assume that $s_{12} \neq 0$. What impacts will collinearity between x_i and z_i have on the properties of your least squares estimators of α_1 , α_2 and β ? Are the estimates efficient?
- 4. (25 pts) Under what condition will the OLS estimates satisfy $\hat{\alpha}_1 = \hat{\alpha}_2$? If this restriction holds, will it give the same estimate as $\hat{\beta}$?
- 5. (25 pts) Outline three equivalent procedures for testing the null hypothesis H_0 : $\alpha_1 = \alpha_2$.
- 6. (25 pts) Describe in detail how to test the hypothesis that $\alpha_1 \alpha_2 = 1$ or use the Box-Cox regression to distinguish between model #1 and the model $y_i = \beta(x_i/z_i) + \epsilon_i$. [Note: If your topic was Box-Cox regressions or the delta method, then you must choose the other one.]
- 7. (25 pts) Assume that $\sigma_{\epsilon,i}^2 = \sigma_{\epsilon}^2 \left[\ln(x_i/z_i) \right]^2$. Describe the efficient least squares estimator and contrast it with OLS. If you choose to report OLS estimates, what standard errors should you use?
- 8. (25 pts) Finally, assume the i.i.d. errors, ϵ_i , instead have pdf $f(\epsilon_i) = c \cdot (1 \epsilon_i^2)$ in the range [-1,1] and zero elsewhere. Sketch the pdf and find the constant c. Form the joint pdf of the errors, take a logarithmic transformation of the joint pdf, and then maximize the function with respect to β . What is the resulting estimate of β ? If it doesn't have a closed-form solution, then outline an estimation strategy.