ECON 4115/5115 Outline of Lecture Notes

Chapter 5. The Forecaster's Toolbox

> Forecasting workflow:

- o Data preparation
- o Plot the data
- o Define the forecasting model
- o Estimate the model
- o Check the model's in-sample performance
- Produce forecasts

> Some simple forecasting methods:

- o Average method
- Naïve method
- Seasonal naïve method

Fitted values and residuals (in-sample):

- o Fitted values: $\hat{y}_{t|t-1}$
- o Residuals: $e_t = y_t \hat{y}_{t|t-1}$

Residual diagnostics

o Two most important features: residuals should be mean zero and white noise

Prediction intervals

- o Based on probability distributions
- o One-step and multi-step prediction intervals: $\hat{y}_{T+h|T} \pm c \cdot \hat{\sigma}_h$

> Forecasting using transformations:

o Box-Cox transformation can be used to make variation and/or seasonality constant.

o Box-Cox transformation:
$$w_t = \begin{cases} \log(y_t) & \text{if } \lambda = 0 \\ (y_t^{\lambda} - 1)/\lambda & \text{otherwise} \end{cases}$$

o Reverse Box-Cox transformation:
$$y_t = \begin{cases} \exp(w_t) & \text{if } \lambda = 0 \\ (\lambda w_t + 1)^{1/\lambda} & \text{otherwise} \end{cases}$$

- o The *fable* package will automatically produce confidence intervals.
- o The back-transformed forecast confidence interval may be asymmetric.

> Forecasting using decompositions

- o The *decomposition_model()* function can be a useful forecasting tool.
- o The seasonal, trend and remainder components can be forecasted separately.
- o The forecasts are then added (or multiplied) together to produce the final forecast.

> Evaluating forecasting accuracy

- o The size of the residuals are not always a great indicator of forecasting accuracy.
- o Over-fitting can reduce in-sample residuals, but won't always improve forecasting.
- o It's better to check the out-of-sample forecasting accuracy.
- o Textbook terminology:
 - "training" data = "in-sample" data
 - "test" data = "out-of-sample" data
- O The *filter()* and *slice()* functions can help split the sample.
- o Residuals vs. Forecast Errors

• Residuals:
$$e_t = y_t - \hat{y}_{t|t-1}$$

• Forecast errors:
$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}$$

- o Scale-dependent accuracy measures:
 - Mean absolute error (MAE): $mean(|e_t|)$
 - Root mean squared error (RMSE): $\sqrt{\text{mean}(e_t^2)}$
- o Scale-independent accuracy measures:
 - Mean absolute percentage error (MAPE): $mean(|100e_t/y_t|)$
 - Symmetric MAPE (sMAPE)
 - Mean absolute scaled errors (MASE), where

MASE = mean(
$$|q_j|$$
), $q_j = \frac{e_j}{\frac{1}{T-m}\sum_{t=m+1}^{T}|y_t-y_{t-m}|}$

o The accuracy() function will calculate the RMSE, MAE, MAPE & MASE.