1 Dummy Variable Regression Models

Dummy Variables

- Represented as D_i
- $D_i = \{0 \text{ or } 1\}$
- Measure qualitative data
- Examples:
 - Gender: $D_{1i} = Male$ and $D_{2i} = Female$
 - Ethnicity: $D_{1i} = Caucasian$, $D_{2i} = Latino$, $D_{3i} = Asian$, etc.
 - Region: $D_{1i} = Northwest$, $D_{2i} = Southwest$, $D_{3i} = Central$, etc.
 - Time period: $D_{1i} = 1970s$, $D_{2i} = 1980s$, etc.

Dummy-Variable Trap

- Seasonality: $D_{1i} = Spring$, $D_{2i} = Summer$, $D_{3i} = Fall$, and $D_{4i} = Winter$
- Regression model: $Y_i = \beta_1 + \beta_2 D_{2i} + \beta_3 D_{3i} + \beta_4 D_{4i} + u_i$
- Omit one category with an intercept base category
- Otherwise, perfect multicollinearity

Intercept Dummy

- $\bullet \ Y_i = \beta_1 + \beta_2 D_i + \beta_3 X_i + u_i$
- Parallel regression lines with shift
- Draw figure

Slope (Interactive) Dummy

- $Y_i = \beta_1 + \beta_2 D_i + \beta_3 X_i + \beta_4 (D_i * X_i) + u_i$
- Two regression lines with shift and different slopes
- Draw figure

Applications

- Earnings equation: $Wage_i = \beta_1 + \beta_2 Union_i + \beta_3 Exper_i + \beta_4 (Union_i * Exper_i) + u_i$
- Phillips curve