
ECON 5350 Class Notes
Specification Analysis and Data Problems

1 Introduction

The first part of this section is concerned with the consequences of misspecifying the regression model. The

last part deals with several practical problems that may occur in the data.

2 Specification Analysis

2.1 Omission of Relevant Variables

Suppose that the "true" regression model is

Y = X1β1 +X2β2 + ε (1)

where X1 is a (n × k1) matrix and X2 is a (n × k2) matrix. Now assume that the researcher mistakenly

estimates the following

Y = X1β1 + ε. (2)

The least squares estimate of β1 is

b1 = (X ′1X1)
−1X ′1Y

= (X ′1X1)
−1X ′1(X1β1 +X2β2 + ε)

= β1 + (X
′
1X1)

−1X ′1X2β2 + (X
′
1X1)

−1X ′1ε.

Taking expectations then gives

E(b1) = β1 + (X
′
1X1)

−1X ′1X2β2.

This implies that b1 is a biased estimator of β1 unless

1. β2 = 0, which means that equation (2) was the "true" model and X2 was not really relevant or

2. X1 and X2 are orthogonal.

Neither of these are likely to be true, so omitting relevant variables produces biased estimates of the

coeffi cients. Although b1 is biased, its variance will not be larger (and is likely to be smaller) than the LS
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estimator for β1 when X2 is included (call this estimator b1.2). These two variances are

var(b1) = σ2(X ′1X1)
−1

var(b1.2) = σ2(X ′1M2X1)
−1 = σ2(X ′1X1 −X ′1X2(X

′
2X2)

−1X ′2X1)
−1

whereM2 is the "residual maker" matrix for X2. Note, however, that the estimates of var(b1) and var(b1.2)

may not reflect this ordering because s2 is a biased estimator of σ2 when excluding X2 from the model.

2.2 Pretest Estimators

At least on a mean-square error basis, it is not clear which estimator is better: b1 or b1.2. A third (and

quite popular) choice is the so-called pretest estimator, call it b∗1. This estimator is a mix of the previous

two. First, you estimate model (1) and then perform a statistical test to see if X2 belongs in the model. If

you reject the null (X2 does matter), then you settle on b1.2. Otherwise, you choose b1. Using an F test,

we can write

E(b∗1) = E(b1) Pr(F < Fc) + β1 Pr(F > Fc) 6= β1.

Therefore, b∗1 is a biased estimator unless the F test is designed to always reject the null hypothesis (size

' 1). The variance of b∗1 is non-trivial to calculate. The MATLAB example below performs a Monte Carlo

experiment to see which of these three estimators performs better on a mean-square error basis.

2.2.1 MATLAB Example. MSE Comparison of a Pretest Estimator.

For this experiment, we let

yi = β1 + β2x2i + β3x3i + εi

and examine the mean square error of three estimators of β2: b2, b2.3 and b
∗
2. For given values of the

independent variables, we then draw 2000 different samples, each of size (n = 50). See MATLAB example

16 for more details.

2.3 Inclusion of Irrelevant Variables

Now assume that the "true" regression model is

Y = X1β1 + ε
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and the researcher mistakenly estimates

Y = X1β1 +X2β2 + ε.

As shown earlier, the estimator for β1 from the latter model is

b1.2 = (X ′1M2X1)
−1X ′1M2Y

= (X ′1M2X1)
−1X ′1M2(X1β1 + ε)

= β1 + (X
′
1M2X1)

−1X ′1M2ε

which is clearly unbiased. However, as shown above, there is a cost involved with including the unnecessary

regressors X2. The variance of b1.2 is inflated relative to the correct estimator b1.

3 Data Problems

This section is an eclectic collection of practical data problems. MATLAB example 17 provides a Monte

Carlo experiment to assess the impact of these data problems.

3.1 Multicollinearity

There are two types of multicollinearity (MC): perfect and imperfect. Perfect MC violates the Classical

assumption that the X matrix is of full rank, in which case OLS cannot be calculated. This section deals

with imperfect MC between the explanatory variables, in which case OLS can be calculated.

3.1.1 Properties of the OLS Estimator

Given that imperfect MC does not violate any of the Classical assumptions, we know that the Gauss-Markov

theorem still holds and b is the best linear unbiased estimator. This is a surprising result to some, but

it simply means that given the multicollinear regressors, there is no better way than OLS to estimate the

population parameters. Of course, all else equal, having less multicollinear regressors would produce more

reliable estimates (smaller standard errors), but that is not an option.

3.1.2 Detection

The first two procedures to detect MC involve using simple correlations and variance inflation factors (VIFs).

1. Simple Correlation Coeffi cients. The easiest method to detect MC is to print out a matrix of simple,

pairwise correlation coeffi cients between the explanatory variables and look for values close to one in

absolute value (say, greater than 0.8 in magnitude).
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2. Variance Inflation Factors. The problem with pairwise correlation coeffi cients is that it can miss

more sophisticated forms of multicollinearity that involve multiple explanatory variables. VIFs are

calculated according to

V IF (β̂j) = (1−R2j.)−1

where R2j. is the coeffi cient of determination for a regression of the jth explanatory variable on all other

explanatory variables. It is interpreted as the amount var(β̂j) is inflated relative to the case of no

MC.

Another approach to detecting MC is the diagnostic approach of looking for MC in the OLS results.

Under severe MC, OLS properties include

1. Small changes in the data (e.g., eliminating a single observation or variable) can cause large changes

in the β̂s.

2. High R2s and low ts.

3. Unexpected signs on the β̂s (of course this could also be caused by an inappropriate theory so be

cautious).

3.1.3 Solutions

There are many ways to handle MC and none of the potential solutions are uniformly the best. Here are

some options:

1. Do nothing. Recall that OLS is still BLUE.

2. Transform the data. Taking ratios, linear combinations or first-differences of the explanatory variables

can often reduce MC.

3. Drop variables. This is probably the most common solution. Many researchers use economic theory,

common sense and initial regression results to choose variables to drop. You need to be very careful,

however, to not drop a relevant variable because it will bias all the remaining estimates.

4. Mechanical approaches. Routines such as ridge regressions and principal components are options but

are not widely accepted by the discipline.

3.2 Measurement Error

Many economic variables are measured with error. For example, the consumer price index is calculated from

a sample of prices across many metropolitan areas and tends to miss new goods, often fails to account for

improvements in existing goods, and doesn’t fully recognize consumers ability to substitute toward cheaper
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goods. Survey data are also often measured with error as respondents misstate their true behavior or

characteristics. Let’s consider two types of measurement error.

3.2.1 Measurement Error in the Dependent Variable

Assume the true model is

y∗i = β1 + β2xi + εi, (3)

where y∗i represents the true and unobserved value of the dependent variable. The researcher, unfortunately,

is endowed with yi = y∗i + µi, a noisy measure of y
∗
i . Rewriting (3) gives

yi = β1 + β2xi + (εi + µi).

Therefore, as long as µi is i.i.d. and uncorrelated with xi, the OLS estimates of the βs will be BLUE.

3.2.2 Measurement Error in the Independent Variables

Now assume the true model is

yi = β1 + β2x
∗
i + εi, (4)

where x∗i represents the true and unobserved value of the dependent variable. The researcher, unfortunately,

is endowed with xi = x∗i + µi, a noisy measure of x
∗
i . Rewriting (4) gives

yi = β1 + β2xi + (εi − β2µi)

= β1 + β2xi + ε
∗
i .

It is clear that the corr(xi, ε∗i ) 6= 0, which violates a Classical assumption and will result in biased and

inconsistent estimates of β2. In fact,

cov(xi, ε
∗
i ) = cov(x∗i + µi, εi − β2µi) = −β2σ2µ

and the inconsistency in b2, measuring the variables in their deviation-from-the-mean form, is given by

plim(b2) = plim(

∑n
i=1 xiyi∑n
i=1 x

2
i

) = plim(
1
n

∑n
i=1(x

∗
i + µi)(β2x

∗
i + εi)

1
n

∑n
i=1(x

∗
i + µi)

2
).

Using Slutsky’s theorem and Q∗ = plim( 1n
∑n
i=1 x

∗2
i ) we can show that

plim(b2) =
β2Q

∗

Q∗ + σ2µ
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so if σ2µ > 0, b2 is downwardly inconsistent (in magnitude). This matches the fact that cov(xi, ε∗i ) =

−β2σ2µ < 0 when β2 > 0 and cov(xi, ε∗i ) = −β2σ2µ > 0 when β2 < 0, which causes b2 to be biased toward

zero. Signing the bias is much more complicated in a multivariate setting. Finally, the typical solution

is instrumental variables estimation, that is, find a proxy variable for xi that is not correlated with the

measurement error µi.

3.3 Missing Observations

A third practical problem with economic data is missing observations (i.e., "holes" in your dataset). This

is a common occurrence in survey data as people refuse to answer questions. If observations for certain

questions are missing there are several options.

1. Eliminate the entire row (entire observation) from the dataset. There are two problems with this

approach. First, missing observations are often not random, so eliminating them will produce a

sample that is not representative of the population (e.g., maybe old people are reluctant to state their

age). Second, this often leaves you with too few remaining observations.

2. Replace the missing value with the sample mean. If the entire row of the X matrix is missing, this is no

different than entirely eliminating the observation. Furthermore, if missing values are systematically

related to X, the sample mean may not be an representative estimate of the true value of X.

3. Dummy variable approach. Create a new dummy variable for each variable that has missing obser-

vations (provided they are missing in different rows) and add the dummies to the X matrix. In this

fashion, the researcher is using all the available observations on an explanatory variable in calculat-

ing the corresponding coeffi cient. One downside is that like (1) and (2) above, it assumes that the

observations are missing at random, which is not always the case.

4. Sophisticated interpolation. There are several available routines that allow one to use in-sample and

out-of-sample information to make a more sophisticated (than the unconditional mean) guess at the

missing value. Little is known about the property of these estimators, and what it known, typically

comes from simulation exercises in special contexts.
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