
ECON 5360 Class Notes
Systems of Equations

1 Introduction

Here, we consider two types of systems of equations. The �rst type is a system of Seemingly Unrelated

Regressions (SUR), introduced by Arnold Zellner (1962). Sets of equations with distinct dependent and

independent variables are often linked together by some common unmeasurable factor. Examples include

systems of factor demands by a particular �rm, agricultural supply-response equations, and capital-asset

pricing models. The methods presented here can also be thought of as an alternative estimation framework

for panel-data models.

The second type is a Simultaneous Equations System, which involve the interaction of multiple endoge-

nous variables within a system of equations. Estimating the parameters of such as system is typically not as

simple as doing OLS equation-by-equation. Issues such as identi�cation (whether the parameters are even

estimable) and endogeneity bias are the primary topics in this section.

2 Seemingly Unrelated Regressions (SUR) Model

Consider the following set of equations

yi = Xi�i + �i (1)

for i = 1; :::;M , where the matrices yi, Xi and �i are of dimension (T�1), (T�Ki) and (Ki�1), respectively1 .

The stacked system in matrix form is

Y =

266666664

y1

y2
...

yM

377777775
=

266666664

X1 0 � � � 0

0 X2 0

...
. . .

...

0 0 � � � XM

377777775

266666664

�1

�2
...

�M

377777775
+

266666664

�1

�2
...

�M

377777775
= X� + �:

Although each of theM equations may seem unrelated (i.e., each has potentially distinct coe¢ cient vectors,

dependent variables and explanatory variables), the equations in (1) are linked through their (mean-zero)

1Although each equation typically represents a separate time series, it is possible that T instead denotes the number of cross
sections within an equation.

1



error structure

E(��0) = 
 = �
 IT =

266666664

�11IT �12IT � � � �1MIT

�21IT �22IT �2MIT
...

. . .
...

�M1IT �M2IT � � � �MMIT

377777775
MT�MT

where

� =

266666664

�11 �12 � � � �1M

�21 �22 �2M
...

. . .
...

�M1 �M2 � � � �MM

377777775
M�M

is the variance-covariance matrix for each t = 1; :::; T error vector.

2.1 Generalized Least Squares (GLS)

The system resembles the one we studied in chapter 10 on nonshperical disturbances. The e¢ cient estimator

in this context is the GLS estimator

�̂ = (X 0
�1X)�1(X 0
�1Y ) = [X 0(��1 
 I)X]�1[X 0(��1 
 I)Y ]:

Assuming all the classical assumptions hold (other than that of spherical disturbances), GLS is the best

linear unbiased estimator. There are two important conditions under which GLS does not provide any

e¢ ciency gains over OLS:

� �ij = 0. When all the contemporaneous correlations across equations equal zero, the equations are

not linked in any fashion and GLS does not provide any e¢ ciency gains. In fact, one can show that

b = �̂.

� X1 = X2 = � � � = XM . When the explanatory variables are identical across equations, b = �̂.

As a rule, the e¢ ciency gains of GLS over OLS tend to be greater when

� the contemporaneous correlation in errors across equations (�ij) is greater and

� there is less correlation between X across equations.

2.2 Feasible Generalized Least Squaures (FGLS)

Typically, � is not known. Assuming that a consistent estimator of � is available, the feasible GLS estimator

�̂FGLS = (X
0
̂�1X)�1(X 0
̂�1Y ) = [X 0(�̂�1 
 I)X]�1[X 0(�̂�1 
 I)Y ] (2)
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will be a consistent estimator of �. The typical estimator of � is

�̂ =

266666664

�̂11 �̂12 � � � �̂1M

�̂21 �̂22 �̂2M
...

. . .
...

�̂M1 �̂M2 � � � �̂MM

377777775
=

266666664

1
T e

0
1e1

1
T e

0
1e2 � � � 1

T e
0
1eM

1
T e

0
2e1

1
T e

0
2e2

1
T e

0
2eM

...
. . .

...

1
T e

0
Me1

1
T e

0
Me2 � � � 1

T e
0
MeM

377777775
; (3)

where ei; i = 1; :::;M represent the OLS residuals. Degrees of freedom corrections for the elements in �̂

are possible, but will not generally produce unbiasedness. It is also possible to iterate on (2) and (3) until

convergence, which will produce the maximum likelihood estimator under multivariate normal errors. In

other words, �̂FGLS and �̂ML will have the same limiting distributions such that

�̂ML;FGLS
asy� N(�;	)

where 	 is consistently estimated by

	̂ = [X 0(�̂�1 
 I)X]�1:

2.3 Maximum Likelihood

Although asymptotically equivalent, maximum likelihood is an alternative estimator to FGLS that will

provide di¤erent answers in small samples. Begin by rewriting the model for the tth observation as

Yt =

266666664

y1;t

y2;t
...

yMt

377777775

0

= x�t

�
�1 �2 � � � �M

�
+

266666664

�1;t

�2;t
...

�M;t

377777775

0

= x�t�+ �
0
t

where x�t is the row vector of all di¤erent explanatory variables in the system and each �i is the column

vector of coe¢ cients for the ith equation (unless each equation contains all explanatory variables, there will

be zeros in �i to allow for exclusion restrictions). Assuming multivariate normally distributed errors, the

log likelihood function is

logL =
XT

t=1
logLt = �

MT

2
log(2�)� T

2
log j�j � 1

2

XT

t=1
�0t�

�1�t (4)

where, as de�ned earlier, � = E(�t�0t). The maximum likelihood estimates are found by taking the derivatives

of (4) with respect to � and �, setting them equal to zero and solving.
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2.4 Hypothesis Testing

We consider two types of tests � tests for contemporaneous correlation between errors and test for linear

restrictions on the coe¢ cients.

2.4.1 Contemporaneous Correlation

If there is no contemporaneous correlation between errors in di¤erent equations (i.e., � is diagonal), then

OLS equation-by-equation is fully e¢ cient. Therefore, it is useful to test the following restriction

H0 : �ij = 0 8i 6= j

HA : H0 false.

Breusch and Pagan suggest using the Lagrange multiplier test statistic

� = T
XM

i=2

Xi�1

j=1
r2ij

where rij is calculated using the OLS residuals as follows

rij =
e0iejq

(e0iei)(e
0
jej)

:

Under the null hypothesis, � is asymptotically chi-squared with M(M � 1)=2 degrees of freedom.

2.4.2 Restrictions on Coe¢ cients

The general F test presented in chapter 6 can be extended to the SUR system. However, since the statistic

requires using �̂, the test will only be valid asymptotically. Consider testing the following J linear restrictions

H0 : R� = q

HA : H0 false

where � = (�1; �2; :::; �M )
0. Within the SUR framework, it is possible to test coe¢ cient restrictions across

equations. One possible test statistic is

W = (R�̂FGLS � q)0[Rvar(�̂FGLS)R0]�1(R�̂FGLS � q)

which has an asymptotic chi-square distribution with J degrees of freedom.
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2.5 Autocorrelation

Heteroscedasticity and autocorrelation are possibilities within the SUR framework. I will focus on autocor-

relation because SUR systems are often comprised of time series observations for each equation. Assume

the errors follow

�i;t = �i�i;t�1 + �it

where �it is white noise. The overall error structure will now be

E(��0) = 
 =

266666664

�11
11 �12
12 � � � �1M
1M

�21
21 �22
22 �2M
2M
...

. . .
...

�M1
M1 �M2
M2 � � � �MM
MM

377777775
MT�MT

where


ij =

266666664

1 �j � � � �T�1j

�i 1 �T�2j

...
. . .

...

�T�1i �T�2i � � � 1

377777775
T�T

:

The following three-step approach is recommended

1. Run OLS equation-by-equation. Compute consistent estimate of �i (e.g., �̂i = (
PT

t=2 ei;tei:t�1)=(
PT

t=1 e
2
i:t)).

Transform the data, using either Prais-Winsten or Cochrane-Orcutt, to remove the autocorrelation.

2. Estimate � using the transformed data as suggested in (3).

3. Use �̂ and equation (2) to calculate the FGLS estimates.

3 SUR Gauss Application

Consider the data taken from Woolridge (2002). The model attempts to explain wages and fringe bene�ts

for 616 workers:

Wages1t = X1t�1 + �1t

Benefits2t = X2;t�2 + �2t

where X1t = X2t so that OLS and FGLS will produce equivalent results. Although OLS and FGLS are

equivalent, one advantage of FGLS within a SUR framework is that it allows you test coe¢ cient restrictions
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across equations. Doing OLS equation-by-equation would not allow such tests. The variables are de�ned

as follows:

Dependent Variables

� Wages. Hourly earnings in 1999 dollars per hour.

� Bene�ts. Hourly bene�ts (vacation, sick leave, insurance and pension) in 1999 dollars per hour.

Explanatory Variables

� Education. Years of schooling.

� Experience. Years of work experience.

� Tenure. Years with current employer.

� Union. One if union member, zero otherwise.

� South. One if live in south, zero otherwise.

� Northeast. One if live in northeast, zero otherwise.

� Northcentral. One if live in northcentral, zero otherwise.

� Married. One if married, zero otherwise.

� White. One if white, zero otherwise.

� Male. One if male, zero otherwise.

See Gauss example 9 for further details.

4 The Simultaneous Equation Model

The simultaneous system can be written as

Y � +XB = E (5)

where the variable matrices are

YT�M =

266666664

Y11 Y12 � � � Y1M

Y21 Y22 Y2M
...

. . .
...

YT1 YT2 � � � YTM

377777775
; XT�K =

266666664

X11 X12 � � � X1K

X21 X22 X2K
...

. . .
...

XT1 XT2 � � � XTK

377777775
; ET�M =

266666664

�11 �12 � � � �1M

�21 �22 �2M
...

. . .
...

�T1 �T2 � � � �TM

377777775
6



and the coe¢ cient matrices are

�M�M =

266666664

11 21 � � � M1

12 22 M2

...
. . .

...

1M 2M � � � MM

377777775
; BK�M =

266666664

�11 �21 � � � �M1

�12 �22 �M2

...
. . .

...

�1K �2K � � � �MK

377777775
:

Some de�nitions.

� Yt;j is the jth endogenous variable.

� Xt;j is the jth exogenous or predetermined variable

� Equations (5) are referred to as structural equations. � and B are the structural parameters.

To examine the assumptions about the error terms, rewrite the E matrix as

~E = vec(E) = (�11; �21; :::; �T1; �12; �22; :::; �T2; :::; �1M ; �2M ; :::; �TM )
0:

We assume

E( ~E) = 0

E( ~E ~E0) = �
 IT

where the variance-covariance matrix for �t = (�t1; �t2; :::; �tM )0 is

� =

266666664

�11 �21 � � � �M1

�12 �22 �M2

...
. . .

...

�1M �2M � � � �MM

377777775
:

4.1 Reduced Form

The reduced-form solution to (5) is

Y = �XB��1 + E��1 = X�+ V
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where � = �B��1, V = E��1 and the error vector ~V = vec(V ) satis�es

E( ~V ) = 0

E( ~V ~V 0) = (��10���1 
 IT ) = (

 IT )

where � = �0
�.

4.2 Demand and Supply Example

Consider the following demand and supply equations

Qst = �0 + �1Pt + �2Wt + �3Zt + �
s
t

Qdt = �0 + �1Pt + �3Zt + �
d
t

Qst = Qdt

where Qst , Q
d
t and Pt are endogenous variables and Wt and Zt are exogenous variables. Let Q = Qst = Q

d
t .

In matrix form, the system can be written as

Y =

266666664

Q1 P1

Q2 P2
...

...

QT PT

377777775
; X =

266666664

1 W1 Z1

1 W2 Z2
...

...
...

1 WT ZT

377777775
; E =

266666664

�s1 �d1

�s2 �d2
...

...

�sT �dT

377777775
and

� =

264 1 1

��1 ��1

375 ; B =
266664
��0 ��0
��2 0

��3 ��3

377775
5 Identi�cation

Identi�cation Question. Given data on X and Y , can we identify �, B and �?

5.1 Estimation of � and 


Begin by making the standard assumptions about the reduced form Y = X�+ V :

� plim( 1TX
0X) = Q

� plim( 1TX
0V ) = 0
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� plim( 1T V
0V ) = 
:

These assumptions imply that the equation-by-equation OLS estimates of � and 
 will be consistent.

5.2 Relationship Between (�;
) and (�; B;�)

With these estimates (�̂ and 
̂) in hand, the question is whether we can map back to �, B and �? We

know the following

1. � = �B��1 and

2. 
 = ��10���1.

To see if identi�cation is possible, we can count the number of known elements on the left-hand side and

compare with the number of unknown elements on the right-hand side.

Number of Known Elements

� KM elements in �

� 1
2M(M + 1) elements in 


Total = M(K + 1
2 (M + 1)):

Number of Unknown Elements

� M2 elements in �

� 1
2M(M + 1) elements in �

� B = KM

Total = M(M +K + 1
2 (M + 1)):

Therefore, we are M2 pieces of information shy of identifying the structural parameters. In other words,

there is more than one set of structural parameters that are consistent with the reduced form. We say the

model is underidenti�ed.

5.3 Identi�cation Conditions

There are several possibilities for obtaining identi�cation:

1. Normalization (i.e., set ii = �1 in � for i = 1; :::;m).

2. Identities (e.g., national income accounting identity).

3. Exclusion restrictions (e.g., demand and supply shift factors).

4. Other linear (and nonlinear) restrictions (e.g., Blanchard-Quah long-run restriction).
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5.3.1 Rank and Order Conditions

Begin by rewriting the ith equation from � = �B��1 in matrix form as

�
� IK

�264�i
Bi

375 = 0 (6)

where �i and Bi represent the ith columns of � and B, respectively. Since the rank of [� IK ] equals K, (6)

represents a system of K equations inM+K�1 unknowns (after normalization). In achieving identi�cation,

we will introduce linear restrictions as follows

Ri

264�i
Bi

375 = 0 (7)

where Rank(Ri) = J . Putting equations (6) and (7) together and rede�ning �i = (�i; Bi)0 gives

264(� ... IK)
Ri

375�i = 0:
From this discussion, it is clear that Ri must provide at least M � 1 new pieces of information. Here are

the formal rank and order conditions.

1. Order Condition. The order condition states that Rank(Ri) = J � M � 1 is a necessary but not

su¢ cient condition for identi�cation. A situation where the order condition is not su¢ cient is when

Ri�j = 0. More details on the order condition below.

2. Rank Condition. The rank condition states that Rank(Ri�) = M � 1 is a necessary and su¢ cient

condition for identi�cation.

We can now summarize all possible identi�cation outcomes.

� Under Identi�cation. If either Rank(Ri) < M � 1 or Rank(Ri�) < M � 1, the ith equation is

underidenti�ed.

� Exact Identi�cation. If Rank(Ri) = M � 1 and Rank(Ri�) = M � 1, the ith equation is exactly

identi�ed.

� Over Identi�cation. If Rank(Ri) > M �1 and Rank(Ri�) =M �1, the ith equation is overidenti�ed.
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5.3.2 Identi�cation Conditions in the Demand and Supply Example

Begin with supply and note that M = 2. The order condition is simple. Since all the variables are in

the supply equation, there is no restriction matrix Rs so that Rank(Rs) = 0 < 1. The supply equation is

underidenti�ed. There is no need to look at the rank condition.

Next, consider demand. The relevant matrix equations are

264(� ... IK)
Rd

375�d =

266666666664

�11 �12 1 0 0

�21 �22 0 1 0

�31 �32 0 0 1

�� �� �� �� ��

0 0 0 1 0

377777777775

266666666664

1

��1
��0
��2
��3

377777777775
= 0;

for which the order condition is clearly satis�ed (i.e., Rank(Rd) = 1 =M � 1). For the rank condition, we

need to �nd the rank of

Rd� =

�
0 0 0 1 0

�
266666666664

1 1

��1 ��1
��0 ��0
��2 0

��3 ��3

377777777775
=

�
��2 0

�
:

Clearly, Rank(Rd�) = 1 =M � 1, so that the demand equation is exactly identi�ed.

6 Limited-Information Estimation

We will consider �ve di¤erent limited-information estimation techniques �OLS, indirect least squares (ILS),

instrumental variable (IV) estimation, two-stage least squares (2SLS) and limited-information maximum

likelihood (LIML). The term limited information refers to equation-by-equation estimation, as opposed to

full-information estimation which uses the linkages among the di¤erent equations.

Begin by writing the ith equation as

Y �i +XBi = �i

yi = Yii + Y
�
i 

�
i +Xi�i +X

�
i �

�
i + �i

where Yi represents the vector of endogenous variables (other than yi) in the ith equation, Y �i represents the

vector of endogenous variables excluded from the ith equation, and similarly for X. Therefore, �i = 0 and
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��i = 0 so that

yi = Yii +Xi�i + �i

=

�
Yi Xi

�264i
�i

375+ �i
= Zi�i + �i:

6.1 Ordinary Least Squares (OLS)

The OLS estimator of �i is

�̂
OLS

i = (Z 0iZi)
�1(Z 0iyi):

The expected value of �̂i is

E(�̂
OLS

i ) = �i + E[(Z
0
iZi)

�1Z 0i�i]:

However, since yi and Yi are jointly determined (recall Zi contains Yi), we cannot expect that E(Z 0i�i) = 0

or plim(Z 0i�i) = 0. Therefore, OLS estimates will be biased and inconsistent. This is commonly known as

simultaneity or endogeneity bias.

6.2 Indirect Least Squares (ILS)

The indirect least squares estimator simply uses the consistent reduced-form estimates (�̂ and 
̂) and the

relations � = �B��1 and 
 = ��10���1 to solve for �, B and �. The ILS estimator is only feasible if the

system is exactly identi�ed. To see this, consider the ith equation as given in (6)

��i = �Bi

where �̂ = (X 0X)�1X 0Y . Substitution gives

(X 0X)�1X 0
�
yi Yi

�264�1
̂i

375 =
264��̂i
0

375 :
Multiplying through by (X 0X) gives

�X 0yi +X
0Yîi = �X 0X

264��̂i
0

375)
X 0yi = X 0Yîi +X

0Xi�̂i

= X 0Zi�̂i:
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Therefore, the ILS estimator for the ith equation can be written as

�̂
ILS

i = (X 0Zi)
�1(X 0yi):

There are three cases:

1. If the ith equation is exactly identi�ed, then X 0Zi is square and invertible.

2. If the ith equation is underidenti�ed, then X 0Zi is not square.

3. If the ith equation is overidenti�ed, then X 0Zi is not square although a subset could be used to obtain

consistent albeit ine¢ cient estimates of �i.

6.3 Instrumental Variable (IV) Estimation

Let Wi be an instrument matrix (dimension T � (Ki +Mi)) satisfying

� plim( 1TW
0
iZi) = �wz, a �nite invertible matrix

� plim( 1TW
0
iWi) = �ww, a �nite positive-de�nite matrix

� plim( 1TW
0
i �i) = 0.

Since plim(Z 0i�i) 6= 0, we can instead examine

plim(
1

T
W 0
iyi) = plim(

1

T
W 0
iZi)� + plim(

1

T
W 0
i �i)

= plim(
1

T
W 0
iZi)�.

Naturally, the instrumental variable estimator is

�̂
IV

i = (W 0
iZi)

�1(W 0
iyi)

which is consistent and has asymptotic variance-covariance matrix

asy:var:(�̂
IV

i ) =
�ii
T
[��1wz�ww�

�1
zw ]:

This can be estimated by

est:asy:var:(�̂
IV

i ) = �̂ii(W
0
iZi)

�1W 0
iWi(Z

0
iWi)

�1

and

�̂ii =
1

T
(yi � Zi�̂

IV

i )0(yi � Zi�̂
IV

i ):
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A degrees of freedom correction is optional. Notice that ILS is a special case of IV estimation for an exactly

identi�ed equation where Wi = X.

6.4 Two-Stage Least Squares (2SLS)

When an equation in the system is overidenti�ed (i.e., rows(X 0Zi) >cols(X 0Zi)), a convenient and intuitive

IV estimator is the two-stage least squares estimator. The 2SLS estimator works as follows:

� Stage #1. Regress Yi on X and form Ŷi = X�̂
OLS .

� Stage #2. Estimate �i by an OLS regression of yi on Ŷi and Xi.

More formally, let Ẑi = (Ŷi; Xi). The 2SLS estimator is given by

�̂
2SLS

i = (Ẑ 0iẐi)
�1(Ẑ 0iyi)

where the asymptotic variance-covariance matrix for �̂
2SLS

i can be estimated consistently by

est:asy:var(�̂
2SLS

i ) = �̂ii(Ẑ
0
iẐi)

�1

and

�̂ii =
1

T
(yi � Zi�̂

2SLS

i )0(yi � Zi�̂
2SLS

i ).

6.5 Limited-Information Maximum Likelihood (LIML)

Limited-information maximum likelihood estimation refers to ML estimation of a single equation in the

system. For example, if we assume normally distributed errors, then we can form the joint probability

distribution function of (yi; Yi) and maximize it by choosing �i and the appropriate elements of �. Since

the LIML estimator is more complex but asymptotically equivalent to the 2SLS estimator, it is not widely

used.

Note. When the ith equation is exactly identi�ed, �̂
ILS

i = �̂
IV

i = �̂
2SLS

i = �̂
LIML

i .

7 Full-Information Estimation

The �ve estimators mentioned above are not fully e¢ cient because they ignore cross-equation relationships

between error terms and any omitted endogenous variables. We consider two fully e¢ cient estimators below.
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7.1 Three-Stage Least Squares (3SLS)

Begin by writing the system (5) as

266666664

y1

y2
...

yM

377777775
=

266666664

Z1 0 � � � 0

0 Z2 0

...
. . .

...

0 0 � � � ZM

377777775

266666664

�1

�2
...

�M

377777775
+

266666664

�1

�2
...

�M

377777775
) y = �Z� + �

where � = ~E and

E(��0) = �
 IT .

Then, applying the principle from SUR estimation, the fully e¢ cient estimator is

�̂ = ( �W 0(��1 
 I) �Z)�1( �W 0(��1 
 I)y)

where �W indicates an instrumental variable matrix in the form of �Z. Zellner and Theil (1962) suggest the

following three-stage procedure for estimating �.

� Stage #1. Calculate Ŷi for each equation (i = 1; :::;M) using OLS and the reduced form.

� Stage #2. Use Ŷi to calculate �̂
2SLS

i and �̂ij = 1
T (yi � Zi�̂

2SLS

i )0(yj � Zj �̂
2SLS

j ).

� Stage #3. Calculate the IV-GLS estimator

�̂
3SLS

= [Z 0(�̂�1 
X(X 0X)�10)Z]�1[Z 0(�̂�1 
X(X 0X)�10)y]

= [Ẑ 0(�̂�1 
 I)Ẑ]�1[Ẑ 0(�̂�1 
 I)y]:

The asymptotic variance-covariance matrix can be estimated by

est:asy:var(�̂
3SLS

) = [Z 0(�̂�1 
X(X 0X)�10)Z]�1

= [Ẑ 0(�̂�1 
 I)Ẑ]�1:

7.2 Full-Information Maximum Likelihood (FIML)

The full-information maximum likelihood estimator is asymptotically e¢ cient. Assuming multivariate nor-

mally distributed errors, we maximize

lnL(�;�jy; Z) = �MT
2
ln(2�) +

T

2
ln j�j�1 + T ln j�j � 1

2
(y � Z�)0(��1 
 IT )(y � Z�)
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by choosing �, B and �. The FIML estimator can be computationally burdensome and has the same

asymptotic distribution as the 3SLS estimator. As a result, most researchers use 3SLS.

8 Simultaneous Equations Gauss Application

Consider estimating a traditional Keynesian consumption function using quarterly data between 1947 and

2003. The simultaneous system is

Ct = �0 + �1DIt + �
c
t (8)

DIt = �2 + Ct + It +Gt +NXt + �
y
t (9)

where the variables are de�ned as follows:

Endogenous Variables

� Ct �Consumption.

� DIt �Disposable Income.

Exogenous Variables

� It �Investment.

� Gt �Government Spending.

� NXt �Net Exports.

The conditions for identi�cation of (8), the more interesting equation to be estimated, are shown below.

Begin by writing the system as

Y � +XB = Y

264 1 �1

��1 1

375+X
266666664

��0 ��2
0 �1

0 �1

0 �1

377777775
= E

where Yt = (Ct; DIt) and Xt = (1; It; Gt; NXt). The order condition depends on the rank of the restriction

matrix for (8),

R1 =

266664
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

377775 ;
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which is obviously Rank(R1) = 3 > M � 1 = 1: Therefore, the model is overidenti�ed if the rank condition

is satis�ed (i.e., Rank(R1�) =M � 1). The relevant matrix for the rank condition is

R1� =

266664
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

377775

2666666666666664

1 �1

��1 1

��0 ��2
0 �1

0 �1

0 �1

3777777777777775
=

266664
0 �1

0 �1

0 �1

377775 ;

which has Rank(R1�) = 1. Therefore, equation (8) is overidenti�ed. Another way to see that (8) is

overidenti�ed is to solve for the reduced-form representation of Ct

Ct = �0 + �1[�2 + Ct + It +Gt +NXt + �
y
t ] + �

c
t

=
1

1� �1
[(�0 + �1�2) + �1It + �1Gt + �1NXt + (�

c
t + �1�

y
t )]

Ct = �0 + �1It + �1Gt + �1NXt + vt: (10)

Clearly, estimation of (10) is likely to produce three distinct estimates of �1, which re�ects the overidenti�-

cation problem.

See Gauss examples 10 and 11 for OLS and 2SLS estimation of (8).
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